

Space Charge Effect at MicroBooNE

Michael Mooney

The experiment formerly known as LBNE – BNL Meeting February 11th, 2015

Introduction

- ♦ BNL has developed a tool to study space charge effect at the MicroBooNE detector
 - SpaCE Space Charge Estimator
 - Study simple problems first in detail with dedicated simulations
 - Maintain complete control over simulation chain for now no
 LArSoft, no ANSYS, only code we develop (thus fully understand)
 - Eventually can network with LArSoft to extract correction factors from calibration and to simulate effect in MC

♦ Outline:

- Brief review of Space Charge Effect (SCE)
- Overview of SpaCE
- Simulation of effect on physics object reconstruction
- Proposal of **calibration** scheme using laser tracks + cosmic muons

Roadmap of Today's Talk

1. Review of Space Charge Effect

2. Overview of SpaCE Code Suite

Space Charge Effect

- ◆ **Space charge**: excess electric **charge** (slow-moving ions) distributed over region of **space** due to cosmic muons passing through the liquid argon
 - Modifies E field in TPC, thus track/shower reconstruction
 - For LAr neutrino experiments, effect worst at MicroBooNE

Impact on E Field

- ♦ Visualization of impact on E field (Bo Yu's Maxwell-2D studies)
- ♦ Assumptions:
 - Constant charge deposition rate throughout detector
 - No liquid argon flow serious complication

Impact on Track Reco.

- ♦ Two separate effects on reconstructed **tracks**:
 - Reconstructed track shortens laterally (looks rotated)
 - Reconstructed track bows toward cathode (greater effect near center of detector)
- ◆ Can obtain straight track (or multiple-scattering track) by applying corrections derived from data-driven calibration

SpaCE: Overview

- ◆ Code written in C++ with ROOT libraries
- ♦ Also makes use of external libraries (ALGLIB)
- ♦ Primary features:
 - Obtain E fields analytically (on 3D grid) via Fourier series
 - Use **interpolation** scheme (RBF radial basis functions) to obtain E fields in between solution points on grid
 - Generate tracks in volume line of uniformly-spaced points
 - Employ ray-tracing to "read out" reconstructed {x,y,z} point for each track point – RKF45 method
- ♦ First implemented effects of uniform space charge deposition without liquid argon flow (only linear space charge density)
 - Recently: solved for arbitrary space charge configuration
 - Can now model effects of liquid argon flow!

Compare to FE Results: E

- Looking at central z slice (z = 5 m) in x-y plane
- ♦ Very good shape agreement compared toBo's 2D FE (Finite Element) studies
- ♦ Normalization differences understood (using different rate)

Compare to FE Results: E_v

- Looking at central z slice (z = 5 m) in x-y plane
- ♦ Very good shape agreement here as well
 - Parity flip due to difference in definition of coordinate system

E Field Interpolation

- ◆ Compare 30 x 30 x 120 field calculation (left) to 15 x 15 x 60 field calculation with interpolation (right)
- ◆ Include analytical continuation of solution points **beyond** boundaries in model – improves performance near edges

Ray-Tracing

- Example: track placed at x = 1 m (anode at x = 2.5 m)
 - z = 5 m, y = [0,2.5] m

Track Ionization Electrons: X Reconstruction

Track Ionization Electrons: Y Reconstruction

Sample "Cosmic Event"

500 V/cm

Half Drift Field

250 V/cm

Simulation of SC Effect

- ◆ Can use SpaCE to produce displacement maps
 - Forward transportation: $\{x, y, z\}_{true} \rightarrow \{x, y, z\}_{reco}$
 - Use to **simulate** effect in MC
 - Uncertainties describe accuracy of simulation
 - Backward transportation: $\{x, y, z\}_{reco} \rightarrow \{x, y, z\}_{true}$
 - Derive from calibration and use in data or MC to correct reconstruction bias
 - Uncertainties describe remainder systematic after bias-correction
- ♦ Two principal methods to encode displacement maps:
 - **Matrix representation** more generic/flexible
 - **Parametric** representation (for now, 5th/7th order polynomials) fewer parameters
 - Uses matrix representation as input

Simulation: Matrix Rep.

- ♦ Below: example of **forward transportation** for central z slice
- ◆ Can use interpolation methods to go to finer scales
- ◆ Can similarly produce backward transportation maps with same information and using interpolation methods

Physics Impact of SCE

◆ A significant fraction of the CCQE muons will not be fully-contained within the detector... how to measure **p**_{track}?

Using MCS to Measure p_{track}

<u>Idea</u>: RMS of $\Delta\theta$ distribution $\rightarrow p_{\text{track}}$ (" p_{RECO} ")

- Use angular deflections of track due to Multiple Coulomb Scattering (MCS) in order to find p_{track}
- Need to see how SCE impacts this measurement!

Small angle deflections are governed by the so-called modified Highland formula

$$\theta_0 = \frac{13.6}{p\beta c} \sqrt{\frac{\ell}{X_0}} \left[1 + 0.0038 \, \ell n \left(\frac{\ell}{X_0} \right) \right]$$

 θ_0 : RMS of the $\Delta\theta$ distribution (mrad)

p : particle momentum (GeV/c)

\ell: material thickness

X₀: radiation length

L. Kalousis

Momentum determination via MCS

Laser Track Calibrations

- Can use laser system to calibrate out space charge effect
 - True laser track + reconstructed track → measure backward transportation displacement map
 - Evaluating performance of proposed laser track correction algorithms

♦ Complications:

- Can't address time-dependencies of LAr flow, if non-negligible
- Laser system can only target part of TPC

Calibration Scheme: SCT

- ◆ <u>Proposal</u>: fill in backward transportation displacement maps (where laser system can't reach) using **tomography** technique involving cosmic muons
- **♦** Algorithm: **Space Charge Tomography (SCT)**
- ♦ Main concepts:
 - First use laser crossings to unambiguously calibrate points in TPC bulk "X"
 - Then use single laser tracks to calibrate points in bulk and on detector faces (the latter unambiguously) – "L"
 - Next use ensembles of cosmic muons passing through either anode and one other TPC face (near laser-calibrated point) or two non-anode TPC faces (near laser-calibrated points) – "μ"
 - No displacement at anode plane; know cosmic muon t_o from PMT system
 - Use median $\{\Delta x, \Delta y, \Delta z\}$ correction: multiple-scattering averages out
 - Iterate: $X \to L \to \overline{\mu} \to L \to \overline{\mu} \to L \to \dots$ (with $\overline{\mu} = \mu \to \mu \to \mu \to \dots$)
 - Use crossings of different muon paths (μ) within $\overline{\mu}$ iteration (like X)

Correction to Point P: $\{\Delta x, \Delta y, \Delta z\}$

Assumes perfect laser-track alg. (Bern)

Correction <u>to</u> Point P: $\{\Delta x_{median}, \Delta y_{median}, \Delta z_{median}\}$

Another SCT "µ" Step ("X"-like) BROOKHAVEN NATIONAL LABORATORY

Update Correction to Point P

Summary/Plans

- ◆ **SpaCE** use to study space charge effect at MicroBooNE
 - Understand simple problems first
 - Stand-alone C++ code with ROOT libraries
 - Can import into LArSoft for purposes of simulation and calibration
 - This effort has already begun!
 - Will be available for other experiments (e.g. 35-ton)
- ♦ Working with Erik Voirin to understand possible effects of LAr flow on space charge configuration – impacts calibration ideas
- ◆ Study SCT (Space Charge Tomography) calibration scheme
 - First using toy MC, then LArSoft simulation, then actual data

35-ton Sneak Peek!

BACKUP SLIDES

Relevant Numbers

- ♦ Nominal electron drift velocity: 1.6 mm/μs
- ♦ Ion drift velocity: 8 mm/s
- ♦ Cosmic muon flux:
 - Vertical: $200/m^2/s$
 - Horizontal: **60/m²/s**
- ♦ Max ion charge density in LAr: 90 nC/m³
- ◆ Expected modification to magnitude of E field (compared to nominal drift E field of 500 V/cm):
 - Typical: **±3%**
 - Maximal: $\pm 6\%$
- ♦ Worst-case effects on reconstructed electron position:
 - Drift direction: 1.5 cm
 - Lateral directions: 8 cm

Complications

- ♦ Not accounting for non-uniform charge deposition rate in detector → significant modification?
- ♦ Flow of liquid argon → likely significant effect!
 - Previous flow studies in 2D... differences in 3D?
 - Time dependencies?

Liquid Argon Flow

B. Yu

SpaCE Performance

- ♦ Faster ray-tracing time
 - Was ~5 minutes per cosmic event (10 random tracks)
 - Now ~10 seconds per cosmic event
 - Can get ~10,000 events in one day of running on **one** machine
 - Use ensemble of events to test calibrations that make use of cosmic muons
 - Can use parametric methods to speed studies up significantly
- ◆ Improved E field interpolation between grid points
 - Used 5 layers of grid points outside boundaries
 - Points not physical (not inside volume) but help smoothing of solution near edges
 - Boundaries vastly improved, regions near cathode still a minor issue (~10% discrepancy w.r.t. correction to nominal drift field)

E Field Calc. Convergence

Example: E_x Convergence in x-y Plane (z = 5 m)

E Field Calc. Uncertainty

E Field Interp. Uncert.

E_x

Simulation: Parametric Rep. BROOKHAVEN

Residuals of Forward Transportation (Uncert. in Simulation of Effect)

Impact of Space Charge Effect (Reconstruction Bias)

Residuals of Backward Transportation (Post-bias-correction Uncert. for Perfect Calibration)

Reality: these will be larger!

Smoking-gun Test for SCE

- ♦ Can use cosmic muon tracks for calibration
 - Possibly sample smaller time scales more relevant for a particular neutrinocrossing time slice
 - Minimally: data-driven cross-check against laser system calibration
- **Smoking-gun test**: see lateral charge displacement at track ends of non-contained cosmic muons → space charge effect!
 - No timing offset at transverse detector faces (no E_x distortions)
 - Most obvious feature of space charge effect

Cosmics: Dist. from Edge

- ♦ Very clear qualitative signs of effect in this distribution
- ♦ Sensitivity to rate of cosmic muon flux
 - Sharp cut-off at maximal distortion

Laser System

- ◆ Can use laser system for calibrations, but:
 - Only once per day
 - Limited set of laser paths
 - Ambiguity of correction direction for reconstructed ionization electron clusters
- ♦ Intersection of two laser beams would remove ambiguity
 - Use to seed correction algorithms
- Working with Christoph to help evaluate calibration methods

MCS Simulation Example

X With MCS

Track Ionization Electrons: X Reconstruction

Track Ionization Electrons: X Reconstruction

